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CONTACT BETWEEN A SMOOTH MICROSPHERE
AND AN ANISOTROPIC ROUGH SURFACE

W. Cheng
P. F. Dunn
R. M. Brach
Particle Dynamics Laboratory,
Department of Aerospace and Mechanical Engineering,
University of Notre Dame, Notre Dame, IN, USA

This article discusses the effects of asperities on elastic and adhesive contact be-
tween a smooth sphere and a rough surface. Two numerical methods are intro-
duced: an asperity-superposition method and a direct-simulation method. In the
first method, geometric parameters such as asperity heights, orientations, and
radii of curvature are identified by a least-squares regression of neighboring sur-
face heights measured using an atomic force microscope. The rough surface is
reconstructed by the superposition of these asperities. The modeling of adhesive
and elastic contacts begins with the modeling of a single parabolic-shaped asperity
contact. A generalized JKR model for an arbitrary parabola is developed to suit
this purpose. The contact between the rough surface (represented by the suppo-
sition of parabolic-shaped asperities) and the sphere consequently is modeled
by the mapping and integration of individual asperity contacts. In the second
method, pure-elastic contact is modeled by half-space elastic theory. A contact-
search algorithm is used to find solutions on the displacement and the contact-
pressure distribution that satisfy both the load-displacement equation and the
contact boundary conditions. Results from both methods are compared to reveal
the effects of asperities on adhesion and elastic-contact pressure.

Keywords: Asperity; Surface roughness; Adhesion; Adhesive contact; Elastic contact;
Generalized JKR model
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INTRODUCTION

Contact between rough surfaces has been studied for decades. Most
contact models have been based on the superposition of contacts made
by surface asperities. Earlier models assumed perfect elasticity,
spherical shape, and a constant radius of curvature for the asperities
[1, 2]. Asperity height distributions were assumed to be exponential or
Gaussian [3]. Improved numerical techniques enabled asperity ellip-
ticity and plasticity to be considered [4]. Yet, most models still are
based on the linear superposition of asperity contacts. More realistic
adhesion modeling can be done by including the overlapping of contact
regions and the shape of the asperities. These topics are addressed in
this paper.

The modeling of adhesive contact between rough surfaces is more
difficult because of variations in the heights and sizes of asperities
and interaction between asperities. Fuller and Tabor [3] studied the
effects of roughness on adhesion by experiments and numerical analy-
sis based on the JKR theory. In their study, asperities were assumed
to be hemispheres with the same radii and the heights were modeled
by a Gaussian distribution. Asperity adhesion was modeled according
to the spherical-contact JKR theory. The overall contact force between
the sphere and the rough surface then was estimated to be the integral
sum of the forces exerted by all the spherical asperities whose height
exceeded a given approach distance. The overlapping of contact
regions of neighboring asperities was not taken into account.

In a previous study, Cheng et al. [5] studied the effects of submic-
rometer-to-nanometer scale roughness on adhesion by assuming that
surface roughness is random and homogeneous. One aim of this article
is to show the importance that the anisotropy of asperities and over-
lapping of contact regions have in contact modeling with larger rough-
ness scales. Two methods used to find solutions of the displacement
and pressure during contact are presented in this article: an as-
perity-superposition method and a direct-simulation method.

The first method is comprised of three steps: the modeling of the
rough surface as a superposition of asperities, the contact modeling
of a single asperity, and the modeling of the contact between the
sphere and the rough surface, which is treated as a superposition of
asperities. The asperities are assumed to be parabolas. Geometric
parameters of the asperities, such as the locations and heights of the
asperity peaks, orientations, and radii of curvature are identified by
a least-squares regression of neighboring surface heights. These
heights were determined from atomic force microscope (AFM) scans
of the rough surface. The rough surface then is reconstructed by the
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integration of these detected parabolas. The extracted geometry para-
meters also are used to calculate the statistical properties of the aspe-
rities, such as the distribution of asperity heights, the orientation of
the radii of curvature, and a nondimensional number that describes
the shapes of the asperities. The modeling of the adhesive and elastic
contacts begins with the modeling of single parabolic-shaped asperity
contact. A generalized JKR model for arbitrary parabolas is developed
to suit this purpose. The contact between the rough surface (repre-
sented by the supposition of parabolic-shaped asperities) and the sphere
then is modeled by the integration of individual asperity contacts.

The second method is based on the half-space approximation. To
simplify the analysis, it is assumed that the sphere and the rough sur-
face are frictionless. Therefore, the normal displacement of the sphere
and the rough surface is determined solely by the normal load [9]. The
surface of the contact bodies (the sphere and the rough surface) is div-
ided into uniform rectangular meshes with a constant pressure distri-
bution over each element. The contact pressure and displacement
distribution then can be discretized into two-dimensional arrays.
The continuous load-displacement equation from the half-space ap-
proximation becomes a system of linear equations. A simple and effec-
tive algorithm developed by Kalker [6, 7] is used to find the solutions
for the contact pressure and displacement distribution that satisfy
both the load-displacement relationship and the boundary conditions.
Results from both methods are compared to show the effects that aspe-
rities have on adhesion and the elastic-contact pressure.

The overlapping of contact regions depends on two factors: the level
of the normal and the tangential displacements and the initial spacing
of the asperities over the contact area. This study discusses the situ-
ation of normal contact. For this case, the overlapping of contact
regions depends upon the externally applied normal force (either ten-
sion or compression) and the location of the center of the sphere during
contact. Simulation results show that when an external load is low,
the deformation of individual asperities over the rough surface is local
and overlapping between contact spots does not occur. Consequently,
when the sphere is pulled off, individual contact spots do not overlap.
Therefore, the method of the contact superposition of asperities can be
used to estimate the pull-off force in rough surface contacts. Simula-
tion also shows that the contact force not only is related to overall dis-
placement but also to contact area location on the rough surface. The
density, spacing, heights, and shapes of the asperities change over the
rough surface. Variations in the statistical distribution of the contact
force at the center of the sphere with changes over the rough surface
are analyzed by both methods.
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ASPERITY-SUPERPOSITION MODEL

The Generalized JKR Model for Parabolas

In the first method (the asperity-superposition method), the contact
between the sphere and the rough surface is modeled as the inte-
gration of contacts of individual asperities. The modeling of the contact
of a single asperity provides a foundation for the integration. The tra-
ditional JKR model is valid for the contacts between spheres. A gener-
alized JKR model is developed in this section to describe the adhesive
contact of a parabola, which is a more appropriate shape of an asper-
ity’s contact region.

As contact is made, a contact region around a single asperity is
formed. Surface stresses are generated over the contact region to sup-
port the external load. In the current model, the contact forces are
assumed to act only within the contact region. The contact area for a
parabola and a surface is elliptic. Elastic half-space theory applies be-
cause of the small scale of the parabola and the small scale of the dis-
placement. The contact pressure is assumed to be [9]:

pðx; yÞ ¼ p0

h
1 �

� x
a

�2
�
� y
b

�2i1=2
þ p1

h
1 �

� x
a

�2
�
� y
b

�2i�1=2
; ð1Þ

which acts over the elliptic subcontact region, X ¼
fðx; yÞj x2

a2 þ y2

b2 � 1g. Here x and y are the Cartesian coordinates with
the origin located at the center of the ellipse and a and b represent
the longer (major) and shorter (minor) radii of the ellipse, respect-
ively, as shown in Figure 1. The pressure outside the contact area
is assumed to be zero. The first term on the right side of Equation
(1) is the Hertzian contact force derived from the Hertzian theory.
The second term represents an adhesion force that produces a uni-
form deflection over the contact area. In the absence of adhesion,
p1 ¼ 0 because no tensile stress can be sustained by the contact
area. With the appearance of adhesion, p1 < 0. Tensile stresses
are formed when the magnitude of adhesion is larger than that of
the Hertzian contact pressure. The integration of adhesion over
the contact area is finite. However, at the periphery of the contact
area, a singularity occurs because the tensile stress is unbounded.
Some researchers consider this a limitation of JKR theory. The
magnitude of the displacement within the elliptical contact region
can be described by:

Uðx; yÞ ¼ d� Ax2 � By2: ð2Þ
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According to the half-space elastic theory:

A ¼ ðp0=E
�Þðb=e2a2ÞðKðeÞ � EðeÞÞ; ð3Þ

B ¼ ðp0=E
�Þðb=e2a2Þ

�a2

b2
EðeÞ � KðeÞ

�
; ð4Þ

and

d ¼ bKðeÞ
E� ðp0 þ 2p1Þ; ð5Þ

where d, the overall relative displacement of the two contact bodies,
equals the displacement of the asperity peak. A and B (A < B)
are the principal radii of curvature of the asperity. KðeÞ and EðeÞ
are the complete elliptic integrals of the first and the second kind
of the argument e ¼ ð1 � b2=a2Þ1=2, b < a [8]. E� is the combined

stiffness 1
E� ¼ 1�m2

1

E1
þ 1�m2

2

E2
, E1 and E2 are Young’s moduli of the sur-

faces, and m1 and m2 are the corresponding Poisson’s ratios. A

FIGURE 1 The schematic of the contact area of a single asperity.
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combination of Equations (3) and (4) gives

Aa2 þ Bb2 ¼ p0b

E� KðeÞ: ð6Þ

Equations (3) and (4) show that the ratio of the large and
small radii, k ¼ b=a, is independent of external load and is determi-
ned by

B

A
¼ EðeÞ � k2KðeÞ

k2½KðeÞ � EðeÞ�
; ð7Þ

where k ¼ b=a and b � a. The elastic strain energy stored in the con-
tact bodies can be estimated from Equations (1), (2), and (5):

UE ¼
Z Z

ðx; yÞ2X
pðx; yÞUðx; yÞdxdy

¼ pa2 bKðeÞ
E�

1

3
p2

0 þ
5

3
p0p1 þ 2p2

1 �ðAaa þ Bb2Þ 1

15
p0 þ

1

3
p1

� �� �
:

��
ð8Þ

For spheres, a ¼ b and KðeÞ ¼ p=2. The corresponding strain energy is
[9]

UE ¼ p2a3

E�
2

15
p2

0 þ
2

3
p0p1 þ p2

1

� �
: ð9Þ

The following relations can be found from Equations (3) and (4):

p0 ¼ Aa2 þ Bb2

bKðeÞ E� ð10Þ

and

p1 ¼ d� Aa2 � Bb2

2bKðeÞ E�: ð11Þ

The strain energy as a function of the displacement, d, can be derived
by substituting Equations (10) and (11) into Equation (9):

UE ¼ paE�

2kKðeÞ
1

5
b2a4 � 2

3
bda2 þ d2

� �
; ð12Þ

where b ¼ Aþ k2B. Variation in strain energy, UE, with a and b can be
determined, keeping k ¼ b=a and the overall relative displacement of
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the two contact bodies constant (the elliptical shape of the contact area
does not change). It is easy to find from Equation (12) that

@UE

@a

�����
d;k

¼ pE�

2kKðeÞ ba2 � d
� 	2¼ 2pka2KðeÞ

E� p2
1: ð13Þ

For spheres, b ¼ 1=R, where R is the radius of the sphere. Equation
(13) becomes @UE

@a jd ¼ p2a2

E� p2
1 [9].

The free surface energy due to adhesion can be modeled as:

US ¼ �2cpab; ð14Þ

where 2c is the combined surface energy per unit area of two surfaces
and pab is the contact area. For a sphere, the free surface energy is
US ¼ �2cpa2 [9]. The total energy of the system is UT ¼ UE þUS.
For equilibrium, @UT=@a vanishes, giving

ba2 � d
� 	2¼ 8k2KðeÞac

E� : ð15Þ

Using the relationship given by Equation (11), an expression for p1 can
be found:

p1 ¼ � 2cE�

aKðeÞ


 �1=2

: ð16Þ

On the other hand, the integration of Equation (1) over the contact
area, X, gives the total contact force:

P ¼ 2pka2 p0

3
þ p1

� �
: ð17Þ

Combining Equations (16) and (17), a relationship regarding the exter-
nal load can be found:

P� 2pbE�a3

3KðeÞ


 �2

¼ 8p2ck2E�a3

KðeÞ : ð18Þ

For a sphere, Equation (18) becomes

P� 4E�a3

3R


 �2

¼ 16pcE�a3; ð19Þ
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which is the fundamental equation for the JKR theory. The variables
a, d, and P can be made dimensionless as a� ¼ a=ac, d� ¼ d=dc, and
P� ¼ P=Pc. The following parameters can be used in nondimensionali-
zation:

ac ¼
9ck2KðeÞ

2b2E�

 !1=3

; ð20Þ

dc ¼
9ck2KðeÞ
2b1=2E�

 !2=3

; ð21Þ

and

3Pc ¼
2pck2

b
: ð22Þ

Using these expressions, Equations (15) and (18) can be nondimensio-
nalized as

ðd� � a�2Þ2 ¼ 16

9
a� ð23Þ

and

ðP� � a�3Þ2 ¼ 4a�3: ð24Þ

Equations (23) and (24) constitute the generalized JKR model valid for
all parabolic contact. The JKR model for a sphere is one of the special
cases of these equations.

The predicted contact behavior of the generalized JKR model for an
arbitrarily shaped parabola is shown in Figures 2, 3, and 4. Figure 2
depicts the relationship between the longer radius of the contact area
and the overall displacement according to both the Hertzian and JKR
theories. Hertzian theory shows a monotonic relationship between
these two variables. No contact area is formed when the surfaces are
separated. However, for JKR theory, the adhesion between surfaces
can develop at a relatively low tensile stress. Therefore, the contact
area starts to appear even when the overall displacement is negative.
The relationship between the overall displacement and the longer
radius of the contact area is not monotonic. As shown in Figure 2,
no contact occurs when the approaching distance between the contact
bodies is larger than the critical distance (�d� > ð1=3Þ1=3). However,
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due to adhesion, the contact bodies make a sudden contact when they
are at the critical distance �d� ¼ ð1=3Þ1=3. The sudden establishment
of the contact is called ‘‘ jump-on. ’’ A contact area with the longer
radius of a� ¼ ð1=3Þ2=3 is formed at the jump-on. Multiple solutions
exist when the distance between the contact bodies is smaller than
the critical distance (0 � �d� � ð1=3Þ1=3). When multiple solutions
exist, the larger contact area is the stable solution that is observed
in reality.

Figure 3 displays the relationship between the external load and
the longer contact radius. Again, Hertzian theory predicts a monotonic
relationship and the JKR theory predicts multiple solutions at
�1 � P� � 0. When multiple solutions exist, the larger contact area
is the stable solution. Therefore, P� ¼ �1 is the turning point. Two
contact bodies suddenly are separated and the contact area becomes
zero when the dimensionless pull-off force is larger than or equal to
unity. Figure 4 shows the displacement-load relationship. The
stable-solution branch will be used in modeling rough surface contact,
which is introduced in the following section.

FIGURE 2 a=ac versus d=dc for a single asperity.
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Rough Surface Reconstruction

The next step in formulating the rough-surface contact model is to de-
scribe analytically the surface heights of the rough surface. The rough
surface is modeled as the superposition of parabolics with arbitrary
principal radii of curvature and orientation. For the region used to
characterize the rough surface, an asperity peak is defined as any
point at which the local slope of the surface is zero and the height is
higher than neighboring points. In other words, the asperity peaks
are local maxima. Therefore, the local surface surrounding a parti-
cular asperity peak at ðx0; y0Þ can be described by

Sðx� x0; y� y0Þ ¼ A0x
2 þ B0y

2 þ C0xy: ð25Þ

Equation (25) is digitized in a discrete form, which is suitable for
image analysis of an AFM surface image:

Kði; jÞ ¼ Ai2 þ Bj2 þ Cij; ð26Þ

FIGURE 3 a=ac versus P=Pc for a single asperity.
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where ði; jÞ is the relative distance between neighboring points and the
peak point. The coefficients A, B, and C relate to A0, B0, and C0 by

A0 ¼ An; ð27Þ

B0 ¼ Bn; ð28Þ

C0 ¼ Cn; ð29Þ

and

n ¼ dz

dx2
; ð30Þ

where dx is the resolution of one pixel of the AFM image (with units of
nm=pixel) and dz is the surface height resolution of the AFM image.
For the AFM data used in this study, surface heights within the range
of 0 to 23 nm are represented by 221 units. Therefore, dz ¼ 0:1 nm.
Coefficients A, B, and C then can be determined by a least-squares

FIGURE 4 The nondimensional load-displacement relationship for a single
asperity.
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regression analysis of the heights of neighboring points (in this study,
surface heights within a 5 � 5 square centering at the peak are used).
For convenience, the local surface near the asperity peak is described
in the new axis system by rotation of the principal axes so that:

Sðîi; ĵjÞ ¼ ÂAîiþ B̂Bĵj; ð31Þ

where ÂA and B̂B are the principal radii of curvature and ÂA � B̂B. It is
easy to show that the orientation angle of the principal axes is

ÂA ¼ A cos2 hþ B sin2 hþ C cos h sin h; ð32Þ
B̂B ¼ A sin2 hþ B cos2 h� C cos h sin h; ð33Þ

and

h ¼ 1

2
arctan

C

A� B
: ð34Þ

Obviously, for real surfaces there is no guarantee that ÂA ¼ B̂B. The stat-
istical characteristics of the orientation of the principal axes and the
principal radii of curvature are summarized in the following section.
Finally, the extracted radii of curvature and orientation angles can
be used to reconstruct the asperity. The rough surface then is recon-
structed by the superposition of individual asperities (by hiding the
overlapping parts).

Superposition of Asperity Contacts

Based on the results of surface reconstruction and single-asperity con-
tact modeling, the contact between a rough surface and a smooth
sphere can be modeled. At first, an overall displacement of the sphere,
d0, is specified. The distance between each asperity peak and the sur-
face of the sphere is calculated as:

di ¼ Zmax � Zi þ Si � d0; ð35Þ

where Zmax is the height of the peak that makes the first contact with
the surface of the sphere. Zi is the height of the ith peak. Si is the
height of the point on the sphere that contacts the ith peak. The dis-
placement, di, is then nondimensionalized by d�i ¼ di=dci. The para-
meter dci that nondimensionalizes an asperity’s displacement is
calculated from Equation (21) by using corresponding values of k
and b acquired from the surface reconstruction procedure. When
d�
i � �ð1=3Þ1=3, the dimensionless contact force, P�

i , is determined

760 W. Cheng et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
1
0
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



from the generalized JKR relationship shown in Figure 4. When
d�
i < �ð1=3Þ1=3, the contact force vanishes, P�

i ¼ 0. The total contact
force over the simulated area then is computed by the summation of
individual contact forces by P ¼ RiP

�
i Pci. The factor Pci is defined by

Equation (22) with k and b associated with the ith asperity peak. In
the present study, contact-region overlapping is neglected. The poss-
ible error caused by this approximation is discussed in the following
section.

DIRECT SIMULATION MODEL

The second method for rough surface contact modeling is the direct-
contact simulation model based on the half-space elastic theory. In
the absence of adhesion, it is not necessary to use asperity-superpo-
sition models. Contact can be simulated directly based on the half-
space elastic theory.

In this section the equations used to describe the load-displacement
equations for two bodies in contact are introduced. The two bodies are
compressed in the normal direction. The surfaces of the two bodies are
assumed to be frictionless. In this case, deformation in the tangential
directions does not contribute to the normal displacement. By combin-
ing the displacement and material properties of both bodies, the nor-
mal displacement of contact according to the half-space assumption
can be obtained as

Uðx; yÞ ¼ 1

2p
1 � l1

G1
þ 1 � l2

G2

� �Z
X

dS

r
; ð36Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2

q
and dS ¼ dx0dy0. Uðx; yÞ represents

the normal displacement at point ðx; yÞ. The contact stiffness is
Gi ¼ Ei=ð2 þ 2liÞ. The separation between the surfaces of the two
bodies is related to the normal displacement, Uðx; yÞ, the combined
surface heights, Sðx; yÞ, and overall relative displacement, d0, of two
bodies in contact by:

hðx; yÞ ¼ �Uðx; yÞ þ Sðx; yÞ � d0; ð37Þ

where hðx; yÞ represents the separation between two surfaces and

Sðx; yÞ ¼ Zmax � Zðx; yÞ þ S0ðx; yÞ: ð38Þ

Zðx; yÞ represents the rough surface height, Zmax represents the
highest peak that makes first contact with the sphere, and S0ðx; yÞ
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represents the height of the sphere’s surface. Over the contact region,
the two surfaces contact each other and hðx; yÞ ¼ 0. Outside the contact
region where hðx; yÞ > 0, the surfaces are separated and no interac-
tion exists between them. Therefore, the surface stress, rðx; yÞ, is
zero. This constraint, however, is valid only for elastic contact.
Hence, the approach described in this section is not suitable for ad-
hesive contact simulation.

The integral in Equation (36) can be calculated by dividing the con-
tact area into uniform square meshes with constant pressure distrib-
uted inside each of the elements. The load-displacement can be
expressed in the discrete form as:

Uði; jÞ ¼
XM
m¼1

XN
n¼1

Aij;mnrmn; ð39Þ

with 1 � i;m � M and 1 � j;n � N. The coefficient Aij;mn represents
the displacement at point ði; jÞ produced by the pressure at ðm;nÞ. It
can be calculated by [7]

Aij;mn ¼ dx

2p
1 � l1

G1
� 1 � l2

G2

� �
ðA1 þ A2Þ; ð40Þ

where

A1 ¼ a1 ln
b1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ b2
1

q
b2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ b2
2

q � a2 ln
b1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2 þ b2
1

q
b2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2 þ b2
2

q ð41Þ

and

A2 ¼ b1 ln
a1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ b2
1

q
a2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2 þ b2
1

q � b2 ln
a1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ b2
2

q
a2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2 þ b2
2

q : ð42Þ

Here a1 ¼ m� iþ 0:3, a2 ¼ a1 � 1, b1 ¼ n� jþ 0:5, and b2 ¼ b1 � 1.
The contact pressure and displacement can be found using a simple
and effective algorithm introduced by Kalker [6, 7]. The algorithm
guarantees the convergence of the solution by forcing the boundary
condition that over the contact area (i; j 2 X), rij > 0, and hði; jÞ ¼ 0,
and outside the contact area (i; j =2X), rij ¼ 0 and hði; jÞ > 0. The rough
surface itself does not need to be reconstructed. The surface height
data from the AFM image can be used directly as the input for
Zðx; yÞ given by Equation (38).

Using the direct simulation model, the contact between a smooth
sphere and a smooth flat surface can be calculated. The radius of
the sphere is 3 lm. The Young’s modulus and Poisson’s ratio for the
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material are 75 GPa and 0:22, respectively. Figure 5 shows that the
results on the displacement-load relationship from the direct numeri-
cal simulation agree very well with the analytical expression from the
Hertzian theory. The largest difference between the numerical simula-
tion and the Hertzian theory is less than 1%. The direct simulation
model for elastic contact gives a very accurate solution that can be
used to compare with the results from the asperity-superposition
model. By comparing results of these two kinds of approaches, the vali-
dation and accuracy of the asperity-superposition model can be
evaluated.

Detailed results on surface displacement and contact pressure can
be derived as shown in the following section. However, the method
has difficulty in simulating adhesion based on surface energy. A new
constraint and searching method is needed to include the effects of
surface energy. This constraint can be a model that relates separation
with adhesion, such as the Dugdale model, the Lennard-Jones model,
or a quadratic-programming method used to find multiple solutions.

FIGURE 5 The displacement-load relationship from the direct simulation
and Hertzian theory.
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SIMULATION RESULTS AND COMPARISONS

Basic Simulation Parameters

The modeling methods described in the previous sections are used to
simulate the contact between a glass sphere and a rough glass surface.
Young’s modulus of the material is 75 GPa and the Poisson’s ratio is
0.22. Free surface energy is important in the adhesion calculation.
However, the surface energy for glass differs over a wide range. In
the current study, Gilman’s equation from the elementary theory
was used to estimate the surface energy [10]:

c ¼ ðE=y0Þða0=pÞ2; ð43Þ

where c is the surface energy, y0 is the distance between the crystal-
lographic cleavage planes, and the a0 value is taken to equal the
atomic radii of atoms lying in the cleavage planes. Usually y0 ¼ 2 Å
and a0 ¼ 1:3 Å. Experiments show that the elementary theory (Equa-
tion (43)) gives a relatively reasonable prediction for the surface en-
ergy based on the Young’s modulus [10].

The surface heights of the glass surface are acquired by an AFM
scan, as shown in Figure 6. The actual area of the AFM scan is 5 �
5 lm. The glass surface has a roughness range of 23 nm. The pixel res-
olution of the AFM scan is dx ¼ 9.77 nm=pixel. The resolution on
height is dz ¼ 0.1 nm. The surface of the glass sphere is assumed to
be smooth. The radius of the sphere is 3 lm.

The glass surface is divided into 8 � 8 subareas, as shown in
Figure 7. Centers of the subareas are selected as the centers of contact
between the smooth sphere and the surface. Therefore, 64 cases are
simulated and the statistical properties of the contact position are
analyzed.

Surface Reconstruction Results

Surface features of the glass surface such as the heights, orientation,
and ratios of the longer to shorter radii of the asperities can be
extracted. The rough surface is reconstructed by the superposition of
individual asperities.

Figure 8 shows the reconstructed surface of the glass. The root-
mean-square difference between the original roughness height (shown
in Figure 6) and the reconstructed surface height (shown in Figure 8)
is 0.0034 nm, about 0.03% of the original mean surface height. The
other two parameters, the roughness average, Ra, and the root means
square average, Rq, are also used in describing the reconstructed and
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the original surfaces. The definitions of Ra and Rq are:

Ra ¼ 1

M �N

XM
i¼1

XN
j¼1

jZij � �ZZj; ð44Þ

Rq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M �N

XM
i¼1

XN
j¼1

ðZij � �ZZÞ2

vuut ; ð45Þ

where M and N are numbers of data points in x and y, Zij is the surface
height relative to the datum plane, and �ZZ is the height of the datum
plane. In the current surface regression method, �ZZ ¼ 0. The Ra of
the original and the reconstructed surfaces are 12.842 nm and
12.880 nm, respectively. The difference inRa between the reconstructed

FIGURE 6 The AFM image of the glass surface.
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and the original surfaces is 0.30%. The Rq of the original and the
reconstructed surfaces are 0.0253 nm and 0.0256 nm, respectively.
The difference, Rq, between the reconstructed and the original sur-
faces is 1.14%. Another commonly accepted parameter, Rz, the aver-
age maximum profile of the ten greatest peak-to-valley separations,
is not used in the current comparison because in the parabolic least-
square surface regression method only the peaks are matched. The
valleys, which do not contribute to the contact, are not considered.
The above results show that the current surface model represents
the original rough surface very well. This provides a validation of
the surface feature extraction method.

Figure 9 shows the statistical properties of the asperity peaks. The
probability distribution of the heights of the asperity peaks, Z, is con-
centrated in two groups. The group near 15 nm follows a Gaussian
distribution. The other group near 27 nm includes all the highest
peaks. It corresponds to the bright spots in Figures 6 and 8. These high
peaks may be contaminant microparticles that were not removed by
cleaning. The peak of the probability distribution function of ln B=A

FIGURE 7 8 � 8 simulated contact areas.
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(A and B are defined in Equations (3) and (4)), is biased toward
zero. Most asperities have a longer radius that is less than 10 times
the shorter radius. Figure 9 also shows the distribution of k ¼ b=a,
the ratio of the shorter-to-longer radii of the contact area (a and b
are shown in Figure 1). The mean value of k is 0.6. This implies
that most contact regions are elliptic. The distribution of k can be
approximated by a Gaussian distribution without introducing severe
errors. The probability distribution of the orientation angles of the
principal axes of the asperities is relatively uniform. No directional
preference is observed. The results collectively support that this is
an effective way to determine asperity-related parameters and
statistics.

FIGURE 8 The reconstructed glass surface.
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Direct Simulation Results

Contact simulations can be performed using the direct-simulation and
asperity-superposition models in parallel. The contacts of a smooth
sphere with each of the 64 subregions shown in Figure 7 can be simu-
lated to analyze the effects of the locations of the contact areas.

Figures 10, 11, and 12 show the results of the direct simulation
model. Figure 10 displays the contact pressure and displacement of
the surface when the overall displacement is approximately 17 nm.
The contact regions overlap. The contact pressure not only causes de-
formation over the contact area but also displacement in the outside
region. The interaction between individual asperity peaks implies that
the asperity superposition method is not accurate when the overall
displacement, d0, is large. Figure 11 shows the displacement-load re-
lationship at d0 ¼ 5:08 nm. Because of surface roughness, the displace-
ment-load relationship varies for each of the 8 � 8 contact locations.
At d ¼ 5:08 nm, the probability of contacts between the sphere and

FIGURE 9 Statistics of the reconstructed glass surface.
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the rough surface is low. The mean contact force for the 64 subre-
gions is 0.4 lN. The standard deviation is 3 lN. The secondary peak
of probability near 20 lN reflects the higher contact forces that can
be produced if the center of the sphere is near some of the surface’s
highest spots (where the surface is contaminated by debris parti-
cles). The high spots have significant effects on the standard devi-
ation of the contact forces. As a result, the standard deviation is
10 times as great as the mean. It is clear that the probability dis-
tribution function of the surface contact force is affected not only
by the roughness of the surface but also by the overall displacement
and whether or not the surface is clean. The distribution is ex-
tended as the overall displacement increases, which brings the
sphere closer to the rough surface as shown in Figure 12. When
d ¼ 15:4 nm, the probability for contact increases and the prob-
ability of contact force is extended. The mean is 21 lN and the stan-
dard deviation is 11 lN. A secondary peak appears near 80 lN,
corresponding to the effects of the contaminant microparticles that
are attached to the rough surface.

FIGURE 10 The contact pressure and displacement of a smooth sphere in
contact with a rough glass surface.
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Figure 13 displays the mean displacement-load relationship for
the rough-surface contact. Surface roughness significantly reduces
the contact force. However, it is hard to make a comparison be-
tween the rough-surface and smooth-surface cases. This is because
the overall height of a rough surface is not defined uniquely. For a
smooth surface, at zero displacement, the sphere begins to contact
the flat surface. However, multiple heights can be used as the
datum in measuring the overall surface displacement. In the cur-
rent simulation, the datum for zero displacement is defined as
the top plane of the highest peak of the rough surface. For small
displacements, very few asperity peaks are in contact with the
sphere. Consequently, the contact area is reduced significantly. As
a result, the ratio of the rough-surface to smooth-surface contact
forces is less than 0.1 for d < 10 nm, as shown in Figure 13. In
other words, there is a very significant reduction in the contact
force at small displacements because of surface roughness. As the
overall displacement increases, the rough-surface contact force

FIGURE 11 The overall load-displacement relationship at d ¼ 5:08 nm.
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increases to about 25% of the smooth contact force for the same
displacement.

Asperity-Superposition Results

The advantage of the asperity-superposition approach is that it
provides a way to model the adhesive contact between the rough
surface and the smooth sphere by the generalized JKR theory. How-
ever, one drawback is that the method is valid only for cases when
the external load and overall displacement are small. At a higher load,
the overlapping of contact regions is possible, as indicated by the direct
simulation results described in the previous section. However, the di-
rect-simulation and asperity-superposition models can be performed
in parallel for the case of pure-elastic contact. By comparing the
results from both methods, it can be determined when the asperity-
superposition is valid.

FIGURE 12 The overall load-displacement relationship at d ¼ 15:4 nm.
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Figure 14 displays the load-displacement relationship for pure
elastic contact between the sphere and 58 of the 64 subregions
that were predicted by the direct-simulation method and the
asperity-superposition method. The results for subregions with large
high spots were not included in the curves. When d0 � 12 nm, the
difference between both methods increases dramatically. When the
overall displacement is small, the asperities do not interact with
each other during deformation and the contact regions do not
overlap. Therefore, when d0 < 12 nm, both methods give similar
results.

Adhesive contact between the smooth sphere and each of the 64
subregions of the rough surface also can be simulated with the as-
perity-superposition model. Figure 15 shows the load-displacement
relationship for one of the subregions by the Hertzian theory and
the asperity superposition model. The external force is negative when
9:8 < d0 � 1:24. The pull-off force is �8.6 lN and the pull-off force for
the smooth surface is �19.1 lN. Thus, the pull-off force is reduced to
approximately 50% because of surface roughness. Figure 15 also

FIGURE 13 The mean overall displacement-load relationship.
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reveals that when d0 � 18 nm, the contact force for rough-surface con-
tact surpasses that for smooth-surface contact. This is unrealistic.
When d0 is larger than 15 nm, the deformation of the two surfaces
and the overlapping and merging of contact regions must be taken into
account.

Figure 16 shows the distribution of pull-off force magnitudes. The
mean magnitude of the pull-off force is 2.0 lN, approximately 10% of
the pull-off force of the smooth contact. Supportive data for the signifi-
cant reduction of adhesion due to surface roughness can be found in
Kim et al. [11], Soltani [12] and the recent experimental work of
Ibrahim et al. [13]. The standard deviation of the pull-off force is
1.37 lN. The mean overall pull-off displacement is 9.7 nm. The stan-
dard deviation of the pull-off displacement is 2.52 nm. The mean
pull-off displacement is smaller than 12 nm. At the pull-off displace-
ment, no significant effects of contact region overlap need to be con-
sidered. The asperity superposition method is valid in computing the
pull-off force.

FIGURE 14 The load-displacement relationship for rough surface contact.
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CONCLUSIONS

In this article, two simulation methods, the direct-simulation method
and the asperity-superposition method, are introduced in order to
simulate the contacts between a smooth sphere and a rough glass sur-
face.

The simulation results show that the asperity peak detecting and
least-squares surface-regression algorithm is accurate in representing
the orientations, radii of curvature, and heights of the asperities
obtained from surface AFM images. The difference between the orig-
inal and reconstructed rough surface is negligibly small.

By comparison with the direct-simulation results, the asperity-
superposition method is shown to be valid in modeling contact be-
tween a rough surface and a smooth sphere when the external load
is small. The deformation of individual asperities is local and overlap
between contact regions seldom occurs. When the load and the overall
displacement are small, the methods of asperity superposition and di-
rect simulation give similar contact force results. At the situation of

FIGURE 15 The load-displacement relationship for rough surface contact.
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pull-off, both the external load and displacement are small and the
contact regions do not overlap. Therefore, the superposition of asperity
contacts based on the JKR model is valid in estimating the pull-off
force for rough-surface contact. However, when the external load
and displacement are high, the asperity-superposition model provides
higher contact forces as compared with the direct-simulation model.
To achieve a higher accuracy, the overlapping of contact regions and
the elastic deformation of the rough surface must be modeled.

Simulations also show that the direct simulation model can solve
the Hertzian contact problem accurately. The method is efficient in
computing the surface displacement and contact pressure for rough-
surface contact. An AFM image can be used directly without
reconstruction. Modeling of individual asperity contacts is not needed.
However, the method has difficulty in the simulation of contact with
adhesion.

Elastic-contact simulations show that the contact force is related
not only to the overall displacement but also to the locations of contact.

FIGURE 16 The mean load-displacement relationship for rough surface
contact.
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The contact force is distributed randomly over the rough surface and
its probability density function changes with normal displacement.
Adhesive contact results reveal that surface roughness reduces the
sphere adhesion significantly. For the rough glass surface used in this
study, the pull-off force was reduced by approximately 90% as com-
pared with the smooth-surface contact case. Evidence that supports
this result can be found in Kim et al. [11], Soltani [12] and the recent
work of Ibrahim et al. [13].

These studies show that the contact with adhesion for surfaces with
a roughness scale on the same order as the contact area is even more
complicated because of surface complexity. A direct method of simula-
tion considering the effects of free surface energy is needed. Experi-
ments measuring the force of adhesion using an AFM also are
needed to validate these simulation methods.
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